
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 303 (2007) 135–143

www.elsevier.com/locate/jsvi
Dynamic stiffness matrix development and free vibration
analysis of a moving beam

J.R. Banerjee�, W.D. Gunawardana

School of Engineering and Mathematical Sciences, City University, Northampton Square, London EC1V OHB, UK

Received 12 September 2006; received in revised form 18 December 2006; accepted 21 December 2006

Available online 7 March 2007
Abstract

The dynamic stiffness matrix of a moving Bernoulli–Euler beam is developed and used to investigate its free flexural

vibration characteristics. In order to develop the dynamic stiffness matrix, it is necessary to derive and solve the governing

differential equation of motion of the moving beam in closed analytical form. The solution is then used to obtain the

general expressions for both responses and loads. Boundary conditions are applied to determine the constants in the

general solution, leading to the formation of the frequency dependent dynamic stiffness matrix of the moving beam,

relating the amplitudes of the harmonically varying loads to those of the corresponding responses. The application of the

resulting dynamic stiffness matrix using the Wittrick–Williams algorithm is demonstrated by some illustrative examples.

Numerical results for both simply supported and fixed–fixed end conditions of the beam are discussed, and wherever

possible, some are compared with those available in the literature.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

There are many engineering structures that can be modelled as axially moving beams. Examples include
power transmission belt and chain drives, high-speed magnetic tapes, aerial cable tramways, band saws, pipe-
conveying fluids and many other technological devices. The free vibration analysis of such structures is of
considerable importance in achieving a safe, reliable and where possible, an optimum design. Preliminary
research on the subject can be traced back nearly half a century ago [1] and then about a decade later, Mote [2]
and Barakat [3] approached the problem using, respectively, the Galerkin method and an eigen-function series
superposition procedure. Subsequently, Simpson [4], Tabarrok et al. [5], Buffinton and Kane [6] and Wickert
and Mote [7] extended the work by developing the governing differential equations of motion more accurately,
and sought classical solutions for the problem. On the other hand Hwang and Perkins [8,9] examined both the
stability and free vibration characteristics of moving beams by considering geometric nonlinearity resulting
from the large deformation. Their investigation showed that the critical speed could be sensitive to system
imperfections, such as initial curvature. Later Sreeram and Sivaneri [10] obtained a finite element based
solution for both free and forced vibration response of a moving beam using the Lagrangian multiplier
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

C constant vector
c axial velocity of the moving beam
EI bending or flexural rigidly of the beam
i

ffiffiffiffiffiffiffi
�1
p

K dynamic stiffness matrix
L length of the beam
M bending moment at a cross-section of the

beam
m mass per unit length of the beam,

m ¼ rA

P axially applied tensile load
S shear force at a cross-section of the beam

t time
W amplitude of bending or flexural displa-

cement
w bending or flexural displacement of the

beam
X, Y rectangular Cartesian coordinate system
l non-dimensional natural frequency, see

Eq. (8)
m non-dimensional parameter, see Eq. (8)
n non-dimensional parameter, see Eq. (8)
o circular or angular frequency
y bending rotation
x non-dimensional length
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method. For further reading on this and related research, see Jha and Parker [11], Oz [12,13], Kong and Parker
[14,15], Lee [16], Pellicano [17] and Andrianov and Awrejcewicz [18]. The theory used in this paper is classical
and linear, namely, that of the dynamic stiffness method, which is a powerful alternative to other methods.
However, it is recognised that the application of nonlinear theory can enhance the understanding of the
problem, particularly at higher speeds, but such an analysis is beyond the scope of this paper and interested
readers are referred to Refs. [19–22].

2. Theory

In a rectangular two-dimensional Cartesian coordinate system (XY), Fig. 1 shows a beam of length L,
flexural rigidly EI, mass per unit length m, moving with a constant velocity c, over two supports. (Note that
other support conditions may occur, but simple supports are shown only for convenience.) An axially applied
constant tensile load P, as shown, is acting on the beam. The governing differential equation of motion of the
moving beam and the expressions for shear force (S) and bending moment (M) at a cross-section x from the
origin are given by [14,16]

EI
q4w
qx4
� P

q2w
qx2
þ rA

q2w
qt2
þ 2c

q2w
qx qt

þ c2
q2w
qx2

� �
¼ 0, (1)

Sðx; tÞ ¼ EI
q3w
qx3
þ rAc

qw

qt
þ c

qw

qx

� �
� P

qw

qx
, (2)

Mðx; tÞ ¼ �EI
q2w
qx2

, (3)
X

L

P

→ c

O

Y

Fig. 1. Notation and coordinate system of a moving beam.
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where w is the flexural displacement in the y direction of a point on the axis of the beam at a distance x form
the origin and t is time.

Harmonic oscillation is assumed so that w may be written in the form

wðx; tÞ ¼W ðxÞeiot, (4)

where W is the amplitude of the bending or flexural displacement, o is the circular (or angular) frequency and
i ¼

ffiffiffiffiffiffiffi
�1
p

.
Using Eq. (4), Eq. (1) can be converted into an ordinary differential equation as follows:

EI
d4W

dx4
� P

d2W

dx2
þ rA c2

d2W

dx2
þ 2ioc

dW

dx
� o2W

� �
¼ 0. (5)

Introducing the non-dimensional length x so that

x ¼
x

L
. (6)

Eq. (5) can now be written in the following non-dimensional form:

½D4 � ðp2 � n2ÞD2 þ 2im2D� l2�W ¼ 0, (7)

where

p2 ¼
PL2

EI
; m2 ¼

rAocL3

EI
; n2 ¼

rAc2L2

EI
; l2 ¼

rAo2L4

EI
(8)

and

D ¼
d

dx
(9)

denotes differentiation with respect to x.
The fourth-order differential Eq. (7) can now be solved assuming a solution of the type

W ðxÞ ¼ Ceikx. (10)

Substituting Eq. (10) into Eq. (7) yields the auxiliary equation

k4
þ ðp2 � n2Þk � 2m2k � l2 ¼ 0. (11)

The above equation is a quartic in k and can be solved using standard procedures [23,24]. (Note that the
roots are in general, complex.)

Let the four roots of k in Eq. (11) be kj (j ¼ 1, 2, 3 and 4) so that the solution W(x) of the differential Eq. (7)
is given by

W ðxÞ ¼ C1e
ik1x þ C2e

ik2x þ C3e
ik3x þ C4e

ik4x ¼
X4
j¼1

Cje
ikjx. (12)

The expression for the bending rotation y (x) is given by

yðxÞ ¼
1

L

dW

dx
¼

i

L

X4
j¼4

Cjkje
ikjx. (13)

With the help of Eq. (12), the amplitude of the shear force bending moment can be obtained by substituting
it into Eqs. (2) and (3) and using Eq. (4) to give

SðxÞ ¼ �
EI

L3

X4
j¼1

ifk3
j þ kjðp

2 � n2Þ � m2gCje
ikjx (14)
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and

MðxÞ ¼
EI

L2

X4
j¼1

k2
j Cje

ikjx. (15)

The expressions for bending displacement W(x), bending rotation y(x), shear force S(x) and bending
moment M(x) given by Eqs. (12)–(15) can now be used to derive the dynamic stiffness matrix of the moving
beam by imposing the boundary conditions. Referring to Fig. 2 for the sign convention, the boundary
conditions for responses and loads are given as follows.

Responses:

At x ¼ 0ðx ¼ 0Þ : W ¼W 1 and y ¼ y1;

At x ¼ 1ðx ¼ LÞ : W ¼W 2 and y ¼ y2:
(16)

Loads:

At x ¼ 0ðx ¼ 0Þ : S ¼ S1 and M ¼M1;

At x ¼ 1ðx ¼ LÞ : S ¼ �S2 and M ¼ �M2:
(17)

Substituting Eq. (16) into Eqs. (12) and (13) gives

W 1 ¼ C1 þ C2 þ C3 þ C4, (18)

y1 ¼
i

L
ðC1k1 þ C2k2 þ C3k3 þ C4k4Þ, (19)

W 2 ¼ C1e
ik1 þ C2e

ik2 þ C3e
ik3 þ C4e

ik4 , (20)

y2 ¼
i

L
ðC1k1e

ik1 þ C2k2e
ik2 þ C3k3e

ik3 þ C4k4e
ik4 Þ. (21)

Eqs. (18)–(21) can be written in the following matrix:

W 1

y1
W 2

y2

2
6664

3
7775 ¼

1 1 1 1
ik1

L

ik2

L

ik3

L

ik4

L

eik1 eik2 eik3 eik4

i

L
k1e

ik1
i

L
k2e

ik2
i

L
k3e

ik3
i

L
k4e

ik4

2
6666664

3
7777775

C1

C2

C3

C4

2
6664

3
7775 (22)

or,

d ¼ QC, (23)

where d is the vector of displacements W1, y1, W2, y2, and C is the constant vector with elements C1, C2, C3

and C4 whilst Q is the 4� 4 square matrix as given above.
+ +

S

M

S

M

+
P P

Fig. 2. Sign convention for positive shear force (S), positive bending moment (M) and positive axial load (P).
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Substituting Eq. (17) into Eqs. (14) and (15) gives

S1 ¼ �
EI

L3

X4
j¼1

ifk3
j þ kjðp

2 � n2Þ � m2gCj, (24)

M1 ¼
EI

L2

X4
j¼1

k2
j Cj , (25)

S2 ¼
EI

L3

X4
j¼1

ifk3
j þ kjðp

2 � n2Þ � m2gCje
ikj , (26)

M2 ¼ �
EI

L2

X4
j¼1

k2
j Cje

ikj . (27)

Eqs. (24)–(27) can be written in the following matrix form:

S1

M1

S2

M2

2
6664

3
7775 ¼

R11 R12 R13 R14

R21 R22 R23 R24

R31 R32 R33 R34

R41 R42 R43 R44

2
6664

3
7775

C1

C2

C3

C4

2
6664

3
7775 (28)

or,

F ¼ RC, (29)

where F is the vector of forces S1, M1, S2, M2, and C is the constant vector already defined before (see Eqs.
(22) and (23)) whilst R is the 4� 4 square matrix as above whose elements are

R1j ¼ �
EI

L3
ifk3

j þ kjðp
2 � n2Þ � m2g, (30)

R2j ¼
EI

L2
k2

j , (31)

R3j ¼
EI

L3

X4
j¼1

ifk3
j þ kjðp

2 � n2Þ � m2geikj , (32)

R4j ¼ �
EI

L2
k2

j e
ikj . (33)

By eliminating the constant vector C from Eqs. (23) and (29), the 4� 4 frequency dependent dynamic
stiffness matrix follows as

K ¼ RQ�1. (34)

The above dynamic stiffness matrix can now be used to compute the natural frequencies and mode shapes of
either an individual moving beam or an assembly of them. An effective way is to apply the well-known
algorithm of Wittrick and Williams [25] generally used in solving transcendental eigenvalue problems, and
which has featured in literally hundred of papers (see for example, Refs. [26–29]). It uses the Sturm sequence
property of the dynamic stiffness matrix and ensures that no natural frequencies of the structure are missed.
Computer implementation of the algorithm is very simple, but for a detailed understanding, interested readers
are referred to the original work of Wittrick and Williams [25] which was significantly enhanced later by
Williams [26,27] to include the important case when the dynamic stiffness matrix is Hermitian rather than real,
as in the present investigation.
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3. Scope and limitations of the theory

The dynamic stiffness matrix developed in this paper is limited in that it is based on linear small deflection
theory that may be adequate in the lower ranges of the moving speed, but may not be so at higher speeds. This
is particularly significant in the vicinity of the critical speed when the beam becomes unstable. The present
theory shows that as the moving speed increases, the natural frequency of the beam decreases and eventually,
tends to zero, leading to the instability called divergence phenomenon, which is strictly speaking a nonlinear
phenomenon. For a better understanding of the instability, it will be prudent to use a well-judged nonlinear
analysis, which represents the physical system more accurately. Thurman and Mote [19] made a direct
comparison of the free vibration results of a moving strip using both linear and nonlinear theories. They
generally concluded that the effect of nonlinear terms become more pronounced at higher moving speeds and
particularly nearer the critical speed, when a simple minded linear analysis may not be adequate. Thus,
caution should be exercised when using the present theory, particularly within close proximity of the critical
speed, i.e. in the vicinity of the divergence instability, when nonlinear (velocity dependent) terms become
significant [19]. Nevertheless, the interpolated values of the critical speed computed from the present theory
are helpful in establishing trends and providing a qualitative appraisal of the instability. A recent paper by
Chen and Yang [20] who used both linear and nonlinear theories to solve the problem shed some more light on
the subject. The authors drew similar conclusions to those of Thurman and Mote [19] that the nonlinear
terms become more pronounced at higher moving speeds and for higher-order modes, but significantly,
they produced a formula relating the frequency of nonlinear free vibration to that of the linear one, see their
Table 1

Natural frequencies of a moving beam with simply supported and fixed–fixed boundary conditions for a range of axial load (p2) and

moving speed (n2) parameters

Axial load

parameter (p2)

Moving speed

parameter (n2)
Natural frequencies ðli ¼ oi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrAL4Þ=EI

q
Þ

Simply supported Fixed–fixed

l1 l2 l3 l1 l2 l3

0.00 0.00 9.87 (9.87) 39.48 (—) 88.83 22.37 (22.37) 61.67 (61.67) 120.90

1.00 9.37 (9.26) 39.00 (39.07) 88.39 22.15 (21.95) 61.46 (61.37) 120.51

2.00 7.73 (7.31) 37.84 (37.85) 86.70 21.45 (20.68) 61.22 (60.45) 120.11

0.25 0.00 9.99 39.60 88.95 22.44 61.76 121.00

1.00 9.52 39.08 88.66 22.22 61.66 120.68

2.00 8.05 37.99 88.08 21.52 61.53 120.33

0.50 0.00 10.11 39.72 89.07 22.51 62.31 121.11

1.00 9.65 39.24 88.78 22.29 62.26 120.72

2.00 8.05 38.25 88.08 21.60 62.17 120.42

0.75 0.00 10.23 39.85 89.20 22.60 62.89 121.20

1.00 9.78 39.36 89.09 22.36 62.79 120.86

2.00 8.20 38.26 88.89 21.67 62.71 120.21

1.00 0.00 10.35 39.97 90.32 22.64 63.26 121.31

1.00 9.90 39.48 90.16 22.43 63.21 121.01

2.00 8.35 38.66 90.06 21.74 63.12 120.64

1.50 0.00 10.59 40.22 92.77 22.78 63.58 121.51

1.00 10.15 39.72 92.72 22.59 63.42 121.35

2.00 8.65 38.84 91.06 21.96 63.19 120.80

2.00 0.00 10.82 40.44 92.82 22.91 63.85 121.71

1.00 10.39 39.96 93.12 22.62 63.47 121.56

2.00 8.94 39.24 91.88 22.03 63.23 121.46

Results from Ref. [2] are shown in the parenthesis.
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Eq. (27), so that a direct comparison can be made. For further studies on moving beams using linear and
nonlinear analyses, the survey paper of Chen [21] is recommended. Moreover, the present theory assumes that
the beam is elastic and the material is isotropic and homogeneous. It also ignores damping in the system. Thus,
the analysis is restrictive and may impose limitations when solving some practical problems. For instance, the
dynamic behaviour of viscoelastic moving systems (e.g. certain belt drives) can be very different from the
elastic ones [22].
4. Results and discussion

The dynamic stiffness theory developed above is applied through the use of the Wittrick–Williams
algorithm as a solution technique to compute the natural frequencies of a moving beam with both simply
supported and fixed–fixed boundary conditions. Table 1 shows results in non-dimensional form for the two
cases, respectively. The first three natural frequencies (li, i ¼ 1, 2 and 3) are shown for a range of axial load
(p2) and moving speed (n2) parameters. The first two natural frequencies reported in Ref. [2], which does not
account for the axial load (i.e. p2 ¼ 0) are shown in the parenthesis. The results from the present theory agreed
very well with those of Ref. [2] as can be seen. The effect of the moving speed is to reduce the natural
frequencies and the effect is more pronounced for simply supported boundary conditions than the fixed–fixed
ones, as expected. By contrast there is no cause for surprise that the effect of the applied tensile load is to
increase the natural frequencies (see Table 1) and the effect is more pronounced for the simply supported case
than the fixed–fixed one.

For both simply supported and fixed–fixed boundary conditions, Figs. 3(a) and (b) show, respectively, the
first two natural frequencies as functions of the moving speed, for a zero and non-zero value of the axially
applied tensile load. The trends shown in these figures are in accord with earlier investigations [3,12,13]. It
must be stressed that the divergence instability that corresponds to the critical moving speed at which the
natural frequency tends to zero (i.e. when the curves touch the horizontal axis, see Fig. 3) is based on linear
small deflection theory whose validity in the vicinity of the instability may become questionable. Nevertheless,
the extrapolated value of the critical speed computed from the linear theory provides useful information as an
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indicative step towards capturing the instability. The presence of an axially applied tensile load increases the
critical speed and the fixed–fixed boundary conditions have resulted in higher critical speeds than the simply
supported ones, as expected.

The final set of results shows the effect of the moving speed on the mode shapes of the moving beam. When
the axial load is zero, Figs. 4(a) and (b) show the normalised (i.e. the maximum displacement is set to unity)
fundamental mode of the simply supported and fixed–fixed moving beam, respectively. In this figure the real
part of the bending displacement (WR) is plotted along the length. As the moving speed increases the
maximum bending displacement moves gradually from the centre of the beam to the right for both simply
supported and fixed–fixed boundary conditions—a trend similar to the one observed by other investigators
[3,4,7,9,16].
5. Conclusions

Using classical theory, the dynamic stiffness matrix of a moving beam is developed to investigate its free
vibration characteristics. Natural frequencies for both simply supported and fixed–fixed boundary conditions
are presented for a range of moving speeds and axially applied tensile loads, and wherever possible, results are
compared with published ones. The variation of the fundamental mode with moving speed is illustrated. The
critical speed is ascertained from the projected value of the linear theory, but for a deeper understanding, a
nonlinear analysis might be helpful.
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